Mister Exam

Other calculators


3^(1/x)

Derivative of 3^(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x ___
\/ 3 
31x3^{\frac{1}{x}}
3^(1/x)
Detail solution
  1. Let u=1xu = \frac{1}{x}.

  2. ddu3u=3ulog(3)\frac{d}{d u} 3^{u} = 3^{u} \log{\left(3 \right)}

  3. Then, apply the chain rule. Multiply by ddx1x\frac{d}{d x} \frac{1}{x}:

    1. Apply the power rule: 1x\frac{1}{x} goes to 1x2- \frac{1}{x^{2}}

    The result of the chain rule is:

    31xlog(3)x2- \frac{3^{\frac{1}{x}} \log{\left(3 \right)}}{x^{2}}


The answer is:

31xlog(3)x2- \frac{3^{\frac{1}{x}} \log{\left(3 \right)}}{x^{2}}

The graph
02468-8-6-4-2-1010-100000005000000
The first derivative [src]
 x ___        
-\/ 3 *log(3) 
--------------
       2      
      x       
31xlog(3)x2- \frac{3^{\frac{1}{x}} \log{\left(3 \right)}}{x^{2}}
The second derivative [src]
x ___ /    log(3)\       
\/ 3 *|2 + ------|*log(3)
      \      x   /       
-------------------------
             3           
            x            
31x(2+log(3)x)log(3)x3\frac{3^{\frac{1}{x}} \left(2 + \frac{\log{\left(3 \right)}}{x}\right) \log{\left(3 \right)}}{x^{3}}
The third derivative [src]
       /       2              \        
 x ___ |    log (3)   6*log(3)|        
-\/ 3 *|6 + ------- + --------|*log(3) 
       |        2        x    |        
       \       x              /        
---------------------------------------
                    4                  
                   x                   
31x(6+6log(3)x+log(3)2x2)log(3)x4- \frac{3^{\frac{1}{x}} \left(6 + \frac{6 \log{\left(3 \right)}}{x} + \frac{\log{\left(3 \right)}^{2}}{x^{2}}\right) \log{\left(3 \right)}}{x^{4}}
The graph
Derivative of 3^(1/x)