Mister Exam

Other calculators:


tan(8*x)/(5*x)

You entered:

tan(8*x)/(5*x)

What you mean?

Limit of the function tan(8*x)/(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(8*x)\
 lim |--------|
x->0+\  5*x   /
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
Limit(tan(8*x)/((5*x)), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
transform
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right) = \lim_{x \to 0^+}\left(\frac{\frac{1}{5 x} \sin{\left(8 x \right)}}{\cos{\left(8 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{1}{5 x} \sin{\left(8 x \right)}\right) \lim_{x \to 0^+} \frac{1}{\cos{\left(8 x \right)}} = \lim_{x \to 0^+}\left(\frac{1}{5 x} \sin{\left(8 x \right)}\right)$$
Do replacement
$$u = 8 x$$
then
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(8 x \right)}}{5 x}\right) = \lim_{u \to 0^+}\left(\frac{8 \sin{\left(u \right)}}{5 u}\right)$$
=
$$\frac{8 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{5}$$
The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
is first remarkable limit, is equal to 1.

The final answer:
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right) = \frac{8}{5}$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \tan{\left(8 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(5 x\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(8 x \right)}}{\frac{d}{d x} 5 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)}}{5} + \frac{8}{5}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{8 \tan^{2}{\left(8 x \right)}}{5} + \frac{8}{5}\right)$$
=
$$\frac{8}{5}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
8/5
$$\frac{8}{5}$$
One‐sided limits [src]
     /tan(8*x)\
 lim |--------|
x->0+\  5*x   /
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
8/5
$$\frac{8}{5}$$
= 1.6
     /tan(8*x)\
 lim |--------|
x->0-\  5*x   /
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
8/5
$$\frac{8}{5}$$
= 1.6
= 1.6
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right) = \frac{8}{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right) = \frac{8}{5}$$
$$\lim_{x \to \infty}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right) = \frac{\tan{\left(8 \right)}}{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right) = \frac{\tan{\left(8 \right)}}{5}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\tan{\left(8 x \right)}}{5 x}\right)$$
More at x→-oo
Numerical answer [src]
1.6
1.6
The graph
Limit of the function tan(8*x)/(5*x)