Mister Exam

Other calculators:


sin(3*x)/(4*x)

Limit of the function sin(3*x)/(4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(3*x)\
 lim |--------|
x->0+\  4*x   /
limx0+(sin(3x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right)
Limit(sin(3*x)/((4*x)), x, 0)
Detail solution
Let's take the limit
limx0+(sin(3x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right)
Do replacement
u=3xu = 3 x
then
limx0+(sin(3x)4x)=limu0+(3sin(u)4u)\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = \lim_{u \to 0^+}\left(\frac{3 \sin{\left(u \right)}}{4 u}\right)
=
3limu0+(sin(u)u)4\frac{3 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{4}
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
is first remarkable limit, is equal to 1.

The final answer:
limx0+(sin(3x)4x)=34\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = \frac{3}{4}
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+sin(3x)=0\lim_{x \to 0^+} \sin{\left(3 x \right)} = 0
and limit for the denominator is
limx0+(4x)=0\lim_{x \to 0^+}\left(4 x\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(sin(3x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right)
=
Let's transform the function under the limit a few
limx0+(sin(3x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right)
=
limx0+(ddxsin(3x)ddx4x)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(3 x \right)}}{\frac{d}{d x} 4 x}\right)
=
limx0+(3cos(3x)4)\lim_{x \to 0^+}\left(\frac{3 \cos{\left(3 x \right)}}{4}\right)
=
limx0+34\lim_{x \to 0^+} \frac{3}{4}
=
limx0+34\lim_{x \to 0^+} \frac{3}{4}
=
34\frac{3}{4}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10101-1
Rapid solution [src]
3/4
34\frac{3}{4}
One‐sided limits [src]
     /sin(3*x)\
 lim |--------|
x->0+\  4*x   /
limx0+(sin(3x)4x)\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right)
3/4
34\frac{3}{4}
= 0.75
     /sin(3*x)\
 lim |--------|
x->0-\  4*x   /
limx0(sin(3x)4x)\lim_{x \to 0^-}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right)
3/4
34\frac{3}{4}
= 0.75
= 0.75
Other limits x→0, -oo, +oo, 1
limx0(sin(3x)4x)=34\lim_{x \to 0^-}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = \frac{3}{4}
More at x→0 from the left
limx0+(sin(3x)4x)=34\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = \frac{3}{4}
limx(sin(3x)4x)=0\lim_{x \to \infty}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = 0
More at x→oo
limx1(sin(3x)4x)=sin(3)4\lim_{x \to 1^-}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = \frac{\sin{\left(3 \right)}}{4}
More at x→1 from the left
limx1+(sin(3x)4x)=sin(3)4\lim_{x \to 1^+}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = \frac{\sin{\left(3 \right)}}{4}
More at x→1 from the right
limx(sin(3x)4x)=0\lim_{x \to -\infty}\left(\frac{\sin{\left(3 x \right)}}{4 x}\right) = 0
More at x→-oo
Numerical answer [src]
0.75
0.75
The graph
Limit of the function sin(3*x)/(4*x)