We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{x \to \infty} \log{\left(2^{x} + 1 \right)} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} \frac{1}{\log{\left(\frac{x + 3}{x} \right)}} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\log{\left(1 + \frac{3}{x} \right)} \log{\left(2^{x} + 1 \right)}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \infty}\left(\log{\left(\frac{x + 3}{x} \right)} \log{\left(2^{x} + 1 \right)}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(2^{x} + 1 \right)}}{\frac{d}{d x} \frac{1}{\log{\left(\frac{x + 3}{x} \right)}}}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{x^{2}}{3 \left(- \frac{2^{x} x}{2^{x} x \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2} + 3 \cdot 2^{x} \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2}} - \frac{x}{2^{x} x \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2} + 3 \cdot 2^{x} \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2}}\right)}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{x^{2}}{3 \left(- \frac{2^{x} x}{2^{x} x \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2} + 3 \cdot 2^{x} \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2}} - \frac{x}{2^{x} x \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2} + 3 \cdot 2^{x} \log{\left(2 \right)} \log{\left(1 + \frac{3}{x} \right)}^{2}}\right)}\right)$$
=
$$3 \log{\left(2 \right)}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)