$$\lim_{z \to \infty} \sin{\left(z \right)} = \left\langle -1, 1\right\rangle$$ $$\lim_{z \to 0^-} \sin{\left(z \right)} = 0$$ More at z→0 from the left $$\lim_{z \to 0^+} \sin{\left(z \right)} = 0$$ More at z→0 from the right $$\lim_{z \to 1^-} \sin{\left(z \right)} = \sin{\left(1 \right)}$$ More at z→1 from the left $$\lim_{z \to 1^+} \sin{\left(z \right)} = \sin{\left(1 \right)}$$ More at z→1 from the right $$\lim_{z \to -\infty} \sin{\left(z \right)} = \left\langle -1, 1\right\rangle$$ More at z→-oo