Mister Exam

Other calculators:


sqrt(2+x^2)

Limit of the function sqrt(2+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
       /      2 
 lim \/  2 + x  
x->0+           
$$\lim_{x \to 0^+} \sqrt{x^{2} + 2}$$
Limit(sqrt(2 + x^2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
  ___
\/ 2 
$$\sqrt{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sqrt{x^{2} + 2} = \sqrt{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{x^{2} + 2} = \sqrt{2}$$
$$\lim_{x \to \infty} \sqrt{x^{2} + 2} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \sqrt{x^{2} + 2} = \sqrt{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{x^{2} + 2} = \sqrt{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{x^{2} + 2} = \infty$$
More at x→-oo
One‐sided limits [src]
        ________
       /      2 
 lim \/  2 + x  
x->0+           
$$\lim_{x \to 0^+} \sqrt{x^{2} + 2}$$
  ___
\/ 2 
$$\sqrt{2}$$
= 1.4142135623731
        ________
       /      2 
 lim \/  2 + x  
x->0-           
$$\lim_{x \to 0^-} \sqrt{x^{2} + 2}$$
  ___
\/ 2 
$$\sqrt{2}$$
= 1.4142135623731
= 1.4142135623731
Numerical answer [src]
1.4142135623731
1.4142135623731
The graph
Limit of the function sqrt(2+x^2)