Mister Exam

Other calculators

Integral of sqrt(2+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ___              
  \/ 2               
    /                
   |                 
   |      ________   
   |     /      2    
   |   \/  2 + x   dx
   |                 
  /                  
   ___               
-\/ 2                
$$\int\limits_{- \sqrt{2}}^{\sqrt{2}} \sqrt{x^{2} + 2}\, dx$$
Integral(sqrt(2 + x^2), (x, -sqrt(2), sqrt(2)))
The answer (Indefinite) [src]
  /                                                   
 |                           ________                 
 |    ________              /      2         /    ___\
 |   /      2           x*\/  2 + x          |x*\/ 2 |
 | \/  2 + x   dx = C + ------------- + asinh|-------|
 |                            2              \   2   /
/                                                     
$$\int \sqrt{x^{2} + 2}\, dx = C + \frac{x \sqrt{x^{2} + 2}}{2} + \operatorname{asinh}{\left(\frac{\sqrt{2} x}{2} \right)}$$
The graph
The answer [src]
     /       ___\       ___      /      ___\
- log\-1 + \/ 2 / + 2*\/ 2  + log\1 + \/ 2 /
$$- \log{\left(-1 + \sqrt{2} \right)} + \log{\left(1 + \sqrt{2} \right)} + 2 \sqrt{2}$$
=
=
     /       ___\       ___      /      ___\
- log\-1 + \/ 2 / + 2*\/ 2  + log\1 + \/ 2 /
$$- \log{\left(-1 + \sqrt{2} \right)} + \log{\left(1 + \sqrt{2} \right)} + 2 \sqrt{2}$$
-log(-1 + sqrt(2)) + 2*sqrt(2) + log(1 + sqrt(2))
Numerical answer [src]
4.59117429878528
4.59117429878528

    Use the examples entering the upper and lower limits of integration.