Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 10+x^2+3*x^3+8*x
Limit of (-16+2^x)/(-1+5*sqrt(x)*(5-x))
Limit of (-4+x^2)/(-3+sqrt(1-4*x))
Limit of ((1+x)/(-2+x))^(3+x)
Graphing y =
:
sqrt(2-x^2)
Integral of d{x}
:
sqrt(2-x^2)
Derivative of
:
sqrt(2-x^2)
Identical expressions
sqrt(two -x^ two)
square root of (2 minus x squared )
square root of (two minus x to the power of two)
√(2-x^2)
sqrt(2-x2)
sqrt2-x2
sqrt(2-x²)
sqrt(2-x to the power of 2)
sqrt2-x^2
Similar expressions
sqrt(2+x^2)
Limit of the function
/
sqrt(2-x^2)
Limit of the function sqrt(2-x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
________ / 2 lim \/ 2 - x x->oo
$$\lim_{x \to \infty} \sqrt{2 - x^{2}}$$
Limit(sqrt(2 - x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo*I
$$\infty i$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sqrt{2 - x^{2}} = \infty i$$
$$\lim_{x \to 0^-} \sqrt{2 - x^{2}} = \sqrt{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{2 - x^{2}} = \sqrt{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{2 - x^{2}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{2 - x^{2}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{2 - x^{2}} = \infty i$$
More at x→-oo
The graph