1 / | | ________ | / 2 | \/ 2 - x dx | / 0
Integral(sqrt(2 - x^2), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(2)*sin(_theta), rewritten=2*cos(_theta)**2, substep=ConstantTimesRule(constant=2, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=2*cos(_theta)**2, symbol=_theta), restriction=(x < sqrt(2)) & (x > -sqrt(2)), context=sqrt(2 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | | ________ // ________ \ | / 2 || / 2 / ___\ | | \/ 2 - x dx = C + |-\/ 2 , x < \/ 2 /| / \\ 2 \ 2 / /
1 pi - + -- 2 4
=
1 pi - + -- 2 4
1/2 + pi/4
Use the examples entering the upper and lower limits of integration.