Mister Exam

Other calculators:


sqrt(2)/2

Limit of the function sqrt(2)/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  ___\
     |\/ 2 |
 lim |-----|
x->oo\  2  /
limx(22)\lim_{x \to \infty}\left(\frac{\sqrt{2}}{2}\right)
Limit(sqrt(2)/2, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
Other limits x→0, -oo, +oo, 1
limx(22)=22\lim_{x \to \infty}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}
limx0(22)=22\lim_{x \to 0^-}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}
More at x→0 from the left
limx0+(22)=22\lim_{x \to 0^+}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}
More at x→0 from the right
limx1(22)=22\lim_{x \to 1^-}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}
More at x→1 from the left
limx1+(22)=22\lim_{x \to 1^+}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}
More at x→1 from the right
limx(22)=22\lim_{x \to -\infty}\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}
More at x→-oo
Rapid solution [src]
  ___
\/ 2 
-----
  2  
22\frac{\sqrt{2}}{2}
The graph
Limit of the function sqrt(2)/2