$$\lim_{x \to \infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = - \infty i$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \infty$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \sqrt{\sin{\left(1 \right)}}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \sqrt{\sin{\left(1 \right)}}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = 0$$
More at x→-oo