Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+x^2-4*x)/(1+2*x)
Limit of (e^x-e^2)/(-2+x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of (-1+cos(7*x))/(-1+cos(3*x))
Derivative of
:
sqrt(sin(x))/x
Integral of d{x}
:
sqrt(sin(x))/x
Identical expressions
sqrt(sin(x))/x
square root of ( sinus of (x)) divide by x
√(sin(x))/x
sqrtsinx/x
sqrt(sin(x)) divide by x
Similar expressions
sqrt(sin(x)/x)
sqrt(sinx)/x
Limit of the function
/
sqrt(sin(x))/x
Limit of the function sqrt(sin(x))/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ________\ |\/ sin(x) | lim |----------| x->oo\ x /
lim
x
→
∞
(
sin
(
x
)
x
)
\lim_{x \to \infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right)
x
→
∞
lim
(
x
sin
(
x
)
)
Limit(sqrt(sin(x))/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
5
-5
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
sin
(
x
)
x
)
=
0
\lim_{x \to \infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = 0
x
→
∞
lim
(
x
sin
(
x
)
)
=
0
lim
x
→
0
−
(
sin
(
x
)
x
)
=
−
∞
i
\lim_{x \to 0^-}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = - \infty i
x
→
0
−
lim
(
x
sin
(
x
)
)
=
−
∞
i
More at x→0 from the left
lim
x
→
0
+
(
sin
(
x
)
x
)
=
∞
\lim_{x \to 0^+}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \infty
x
→
0
+
lim
(
x
sin
(
x
)
)
=
∞
More at x→0 from the right
lim
x
→
1
−
(
sin
(
x
)
x
)
=
sin
(
1
)
\lim_{x \to 1^-}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \sqrt{\sin{\left(1 \right)}}
x
→
1
−
lim
(
x
sin
(
x
)
)
=
sin
(
1
)
More at x→1 from the left
lim
x
→
1
+
(
sin
(
x
)
x
)
=
sin
(
1
)
\lim_{x \to 1^+}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \sqrt{\sin{\left(1 \right)}}
x
→
1
+
lim
(
x
sin
(
x
)
)
=
sin
(
1
)
More at x→1 from the right
lim
x
→
−
∞
(
sin
(
x
)
x
)
=
0
\lim_{x \to -\infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = 0
x
→
−
∞
lim
(
x
sin
(
x
)
)
=
0
More at x→-oo
The graph