Mister Exam

Other calculators:


sqrt(sin(x))/x

Limit of the function sqrt(sin(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  ________\
     |\/ sin(x) |
 lim |----------|
x->oo\    x     /
limx(sin(x)x)\lim_{x \to \infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right)
Limit(sqrt(sin(x))/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(sin(x)x)=0\lim_{x \to \infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = 0
limx0(sin(x)x)=i\lim_{x \to 0^-}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = - \infty i
More at x→0 from the left
limx0+(sin(x)x)=\lim_{x \to 0^+}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \infty
More at x→0 from the right
limx1(sin(x)x)=sin(1)\lim_{x \to 1^-}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \sqrt{\sin{\left(1 \right)}}
More at x→1 from the left
limx1+(sin(x)x)=sin(1)\lim_{x \to 1^+}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = \sqrt{\sin{\left(1 \right)}}
More at x→1 from the right
limx(sin(x)x)=0\lim_{x \to -\infty}\left(\frac{\sqrt{\sin{\left(x \right)}}}{x}\right) = 0
More at x→-oo
The graph
Limit of the function sqrt(sin(x))/x