Mister Exam

Other calculators


sqrt(sin(x))/x

Derivative of sqrt(sin(x))/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ________
\/ sin(x) 
----------
    x     
sin(x)x\frac{\sqrt{\sin{\left(x \right)}}}{x}
sqrt(sin(x))/x
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(x)f{\left(x \right)} = \sqrt{\sin{\left(x \right)}} and g(x)=xg{\left(x \right)} = x.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=sin(x)u = \sin{\left(x \right)}.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      cos(x)2sin(x)\frac{\cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    Now plug in to the quotient rule:

    xcos(x)2sin(x)sin(x)x2\frac{\frac{x \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}} - \sqrt{\sin{\left(x \right)}}}{x^{2}}

  2. Now simplify:

    xcos(x)2sin(x)x2sin(x)\frac{\frac{x \cos{\left(x \right)}}{2} - \sin{\left(x \right)}}{x^{2} \sqrt{\sin{\left(x \right)}}}


The answer is:

xcos(x)2sin(x)x2sin(x)\frac{\frac{x \cos{\left(x \right)}}{2} - \sin{\left(x \right)}}{x^{2} \sqrt{\sin{\left(x \right)}}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
    ________                 
  \/ sin(x)        cos(x)    
- ---------- + --------------
       2             ________
      x        2*x*\/ sin(x) 
cos(x)2xsin(x)sin(x)x2\frac{\cos{\left(x \right)}}{2 x \sqrt{\sin{\left(x \right)}}} - \frac{\sqrt{\sin{\left(x \right)}}}{x^{2}}
The second derivative [src]
    ________       ________        2                    
  \/ sin(x)    2*\/ sin(x)      cos (x)        cos(x)   
- ---------- + ------------ - ----------- - ------------
      2              2             3/2          ________
                    x         4*sin   (x)   x*\/ sin(x) 
--------------------------------------------------------
                           x                            
sin(x)2cos2(x)4sin32(x)cos(x)xsin(x)+2sin(x)x2x\frac{- \frac{\sqrt{\sin{\left(x \right)}}}{2} - \frac{\cos^{2}{\left(x \right)}}{4 \sin^{\frac{3}{2}}{\left(x \right)}} - \frac{\cos{\left(x \right)}}{x \sqrt{\sin{\left(x \right)}}} + \frac{2 \sqrt{\sin{\left(x \right)}}}{x^{2}}}{x}
The third derivative [src]
                   /                   2    \                   /         2   \       
                   |    ________    cos (x) |                   |    3*cos (x)|       
                 3*|2*\/ sin(x)  + ---------|                   |2 + ---------|*cos(x)
      ________     |                  3/2   |                   |        2    |       
  6*\/ sin(x)      \               sin   (x)/      3*cos(x)     \     sin (x) /       
- ------------ + ---------------------------- + ------------- + ----------------------
        3                    4*x                 2   ________            ________     
       x                                        x *\/ sin(x)         8*\/ sin(x)      
--------------------------------------------------------------------------------------
                                          x                                           
(2+3cos2(x)sin2(x))cos(x)8sin(x)+3(2sin(x)+cos2(x)sin32(x))4x+3cos(x)x2sin(x)6sin(x)x3x\frac{\frac{\left(2 + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{8 \sqrt{\sin{\left(x \right)}}} + \frac{3 \left(2 \sqrt{\sin{\left(x \right)}} + \frac{\cos^{2}{\left(x \right)}}{\sin^{\frac{3}{2}}{\left(x \right)}}\right)}{4 x} + \frac{3 \cos{\left(x \right)}}{x^{2} \sqrt{\sin{\left(x \right)}}} - \frac{6 \sqrt{\sin{\left(x \right)}}}{x^{3}}}{x}
The graph
Derivative of sqrt(sin(x))/x