Mister Exam

Other calculators


sqrt(sin(x))/x

Derivative of sqrt(sin(x))/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ________
\/ sin(x) 
----------
    x     
$$\frac{\sqrt{\sin{\left(x \right)}}}{x}$$
sqrt(sin(x))/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    ________                 
  \/ sin(x)        cos(x)    
- ---------- + --------------
       2             ________
      x        2*x*\/ sin(x) 
$$\frac{\cos{\left(x \right)}}{2 x \sqrt{\sin{\left(x \right)}}} - \frac{\sqrt{\sin{\left(x \right)}}}{x^{2}}$$
The second derivative [src]
    ________       ________        2                    
  \/ sin(x)    2*\/ sin(x)      cos (x)        cos(x)   
- ---------- + ------------ - ----------- - ------------
      2              2             3/2          ________
                    x         4*sin   (x)   x*\/ sin(x) 
--------------------------------------------------------
                           x                            
$$\frac{- \frac{\sqrt{\sin{\left(x \right)}}}{2} - \frac{\cos^{2}{\left(x \right)}}{4 \sin^{\frac{3}{2}}{\left(x \right)}} - \frac{\cos{\left(x \right)}}{x \sqrt{\sin{\left(x \right)}}} + \frac{2 \sqrt{\sin{\left(x \right)}}}{x^{2}}}{x}$$
The third derivative [src]
                   /                   2    \                   /         2   \       
                   |    ________    cos (x) |                   |    3*cos (x)|       
                 3*|2*\/ sin(x)  + ---------|                   |2 + ---------|*cos(x)
      ________     |                  3/2   |                   |        2    |       
  6*\/ sin(x)      \               sin   (x)/      3*cos(x)     \     sin (x) /       
- ------------ + ---------------------------- + ------------- + ----------------------
        3                    4*x                 2   ________            ________     
       x                                        x *\/ sin(x)         8*\/ sin(x)      
--------------------------------------------------------------------------------------
                                          x                                           
$$\frac{\frac{\left(2 + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{8 \sqrt{\sin{\left(x \right)}}} + \frac{3 \left(2 \sqrt{\sin{\left(x \right)}} + \frac{\cos^{2}{\left(x \right)}}{\sin^{\frac{3}{2}}{\left(x \right)}}\right)}{4 x} + \frac{3 \cos{\left(x \right)}}{x^{2} \sqrt{\sin{\left(x \right)}}} - \frac{6 \sqrt{\sin{\left(x \right)}}}{x^{3}}}{x}$$
The graph
Derivative of sqrt(sin(x))/x