________ \/ sin(x) ---------- x
sqrt(sin(x))/x
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
Now simplify:
The answer is:
________ \/ sin(x) cos(x) - ---------- + -------------- 2 ________ x 2*x*\/ sin(x)
________ ________ 2 \/ sin(x) 2*\/ sin(x) cos (x) cos(x) - ---------- + ------------ - ----------- - ------------ 2 2 3/2 ________ x 4*sin (x) x*\/ sin(x) -------------------------------------------------------- x
/ 2 \ / 2 \ | ________ cos (x) | | 3*cos (x)| 3*|2*\/ sin(x) + ---------| |2 + ---------|*cos(x) ________ | 3/2 | | 2 | 6*\/ sin(x) \ sin (x)/ 3*cos(x) \ sin (x) / - ------------ + ---------------------------- + ------------- + ---------------------- 3 4*x 2 ________ ________ x x *\/ sin(x) 8*\/ sin(x) -------------------------------------------------------------------------------------- x