Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of e^(3-x)*(-2+x)
Limit of -35-14*x-6*x^2
Limit of 5-9*x+3*x^2/2
Limit of 2+((-1+x)/(3+x))^x
Derivative of
:
sqrt(1+x)
Integral of d{x}
:
sqrt(1+x)
Graphing y =
:
sqrt(1+x)
Identical expressions
sqrt(one +x)
square root of (1 plus x)
square root of (one plus x)
√(1+x)
sqrt1+x
Similar expressions
sqrt(x^2+3*x)-sqrt(1+x^2)
sqrt(1+x^2)+sqrt(1-x^2)
sqrt(1-x)
Limit of the function
/
sqrt(1+x)
Limit of the function sqrt(1+x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
_______ lim \/ 1 + x x->oo
lim
x
→
∞
x
+
1
\lim_{x \to \infty} \sqrt{x + 1}
x
→
∞
lim
x
+
1
Limit(sqrt(1 + x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
5
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
x
+
1
=
∞
\lim_{x \to \infty} \sqrt{x + 1} = \infty
x
→
∞
lim
x
+
1
=
∞
lim
x
→
0
−
x
+
1
=
1
\lim_{x \to 0^-} \sqrt{x + 1} = 1
x
→
0
−
lim
x
+
1
=
1
More at x→0 from the left
lim
x
→
0
+
x
+
1
=
1
\lim_{x \to 0^+} \sqrt{x + 1} = 1
x
→
0
+
lim
x
+
1
=
1
More at x→0 from the right
lim
x
→
1
−
x
+
1
=
2
\lim_{x \to 1^-} \sqrt{x + 1} = \sqrt{2}
x
→
1
−
lim
x
+
1
=
2
More at x→1 from the left
lim
x
→
1
+
x
+
1
=
2
\lim_{x \to 1^+} \sqrt{x + 1} = \sqrt{2}
x
→
1
+
lim
x
+
1
=
2
More at x→1 from the right
lim
x
→
−
∞
x
+
1
=
∞
i
\lim_{x \to -\infty} \sqrt{x + 1} = \infty i
x
→
−
∞
lim
x
+
1
=
∞
i
More at x→-oo
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
The graph