Mister Exam

Other calculators

Integral of sqrt(1+x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           2   
 |  t*(1 + x)  dx
 |               
/                
0                
01t(x+1)2dx\int\limits_{0}^{1} t \left(x + 1\right)^{2}\, dx
Integral(t*(1 + x)^2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    t(x+1)2dx=t(x+1)2dx\int t \left(x + 1\right)^{2}\, dx = t \int \left(x + 1\right)^{2}\, dx

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=x+1u = x + 1.

        Then let du=dxdu = dx and substitute dudu:

        u2du\int u^{2}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        Now substitute uu back in:

        (x+1)33\frac{\left(x + 1\right)^{3}}{3}

      Method #2

      1. Rewrite the integrand:

        (x+1)2=x2+2x+1\left(x + 1\right)^{2} = x^{2} + 2 x + 1

      2. Integrate term-by-term:

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        1. The integral of a constant times a function is the constant times the integral of the function:

          2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x2x^{2}

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        The result is: x33+x2+x\frac{x^{3}}{3} + x^{2} + x

    So, the result is: t(x+1)33\frac{t \left(x + 1\right)^{3}}{3}

  2. Add the constant of integration:

    t(x+1)33+constant\frac{t \left(x + 1\right)^{3}}{3}+ \mathrm{constant}


The answer is:

t(x+1)33+constant\frac{t \left(x + 1\right)^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              3
 |          2          t*(1 + x) 
 | t*(1 + x)  dx = C + ----------
 |                         3     
/                                
t(x+1)2dx=C+t(x+1)33\int t \left(x + 1\right)^{2}\, dx = C + \frac{t \left(x + 1\right)^{3}}{3}
The answer [src]
7*t
---
 3 
7t3\frac{7 t}{3}
=
=
7*t
---
 3 
7t3\frac{7 t}{3}
7*t/3

    Use the examples entering the upper and lower limits of integration.