Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-2*asin(x)+asin(2*x))/x^3
Limit of -cos(x)+5*x
Limit of sin(5*x)/(4*x^2)
Limit of (1/x)^(1/x)
Sum of series
:
sqrt(n)
Identical expressions
sqrt(n)
square root of (n)
√(n)
sqrtn
Similar expressions
sqrt((1+n)^3+sqrt(2+n)*(1+n))*atan(n)/(sqrt(n^3+n*sqrt(1+n))*atan(1+n))
Limit of the function
/
sqrt(n)
Limit of the function sqrt(n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
___ lim \/ n n->oo
$$\lim_{n \to \infty} \sqrt{n}$$
Limit(sqrt(n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \sqrt{n} = \infty$$
$$\lim_{n \to 0^-} \sqrt{n} = 0$$
More at n→0 from the left
$$\lim_{n \to 0^+} \sqrt{n} = 0$$
More at n→0 from the right
$$\lim_{n \to 1^-} \sqrt{n} = 1$$
More at n→1 from the left
$$\lim_{n \to 1^+} \sqrt{n} = 1$$
More at n→1 from the right
$$\lim_{n \to -\infty} \sqrt{n} = \infty i$$
More at n→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph