Mister Exam

Other calculators:


(1/x)^(1/x)

Limit of the function (1/x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         ___
        / 1 
 lim x /  - 
x->oo\/   x 
limx(1x)1x\lim_{x \to \infty} \left(\frac{1}{x}\right)^{\frac{1}{x}}
Limit((1/x)^(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010010000000000
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limx(1x)1x=1\lim_{x \to \infty} \left(\frac{1}{x}\right)^{\frac{1}{x}} = 1
limx0(1x)1x=\lim_{x \to 0^-} \left(\frac{1}{x}\right)^{\frac{1}{x}} = \infty
More at x→0 from the left
limx0+(1x)1x=\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{\frac{1}{x}} = \infty
More at x→0 from the right
limx1(1x)1x=1\lim_{x \to 1^-} \left(\frac{1}{x}\right)^{\frac{1}{x}} = 1
More at x→1 from the left
limx1+(1x)1x=1\lim_{x \to 1^+} \left(\frac{1}{x}\right)^{\frac{1}{x}} = 1
More at x→1 from the right
limx(1x)1x=1\lim_{x \to -\infty} \left(\frac{1}{x}\right)^{\frac{1}{x}} = 1
More at x→-oo
The graph
Limit of the function (1/x)^(1/x)