Mister Exam

Other calculators:


-cos(x)+5*x

Limit of the function -cos(x)+5*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-cos(x) + 5*x)
x->0+               
$$\lim_{x \to 0^+}\left(5 x - \cos{\left(x \right)}\right)$$
Limit(-cos(x) + 5*x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(5 x - \cos{\left(x \right)}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(5 x - \cos{\left(x \right)}\right) = -1$$
$$\lim_{x \to \infty}\left(5 x - \cos{\left(x \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(5 x - \cos{\left(x \right)}\right) = 5 - \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(5 x - \cos{\left(x \right)}\right) = 5 - \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(5 x - \cos{\left(x \right)}\right) = -\infty$$
More at x→-oo
Rapid solution [src]
-1
$$-1$$
One‐sided limits [src]
 lim (-cos(x) + 5*x)
x->0+               
$$\lim_{x \to 0^+}\left(5 x - \cos{\left(x \right)}\right)$$
-1
$$-1$$
= -1.0
 lim (-cos(x) + 5*x)
x->0-               
$$\lim_{x \to 0^-}\left(5 x - \cos{\left(x \right)}\right)$$
-1
$$-1$$
= -1.0
= -1.0
Numerical answer [src]
-1.0
-1.0
The graph
Limit of the function -cos(x)+5*x