Mister Exam

Limit of the function sqrt(-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       ____
 lim \/ -x 
x->0+      
$$\lim_{x \to 0^+} \sqrt{- x}$$
Limit(sqrt(-x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sqrt{- x} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{- x} = 0$$
$$\lim_{x \to \infty} \sqrt{- x} = \infty i$$
More at x→oo
$$\lim_{x \to 1^-} \sqrt{- x} = i$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{- x} = i$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{- x} = \infty$$
More at x→-oo
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
       ____
 lim \/ -x 
x->0+      
$$\lim_{x \to 0^+} \sqrt{- x}$$
0
$$0$$
= (0.0 + 0.0138330115128432j)
       ____
 lim \/ -x 
x->0-      
$$\lim_{x \to 0^-} \sqrt{- x}$$
0
$$0$$
= 0.0138330115128432
= 0.0138330115128432
Numerical answer [src]
(0.0 + 0.0138330115128432j)
(0.0 + 0.0138330115128432j)
The graph
Limit of the function sqrt(-x)