Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-3+x^2-2*x)/(-3+x)
Limit of 5^x-cos(x)
Limit of (x/2)^(1/(-2+x))
Limit of (1-3/x)^x
Derivative of
:
1/(1+x^2)
Integral of d{x}
:
1/(1+x^2)
Graphing y =
:
1/(1+x^2)
Identical expressions
one /(one +x^ two)
1 divide by (1 plus x squared )
one divide by (one plus x to the power of two)
1/(1+x2)
1/1+x2
1/(1+x²)
1/(1+x to the power of 2)
1/1+x^2
1 divide by (1+x^2)
Similar expressions
1/(1-x^2)
1/(1+x^2+2*x)-1/(-1+x^2)
Limit of the function
/
1/(1+x^2)
Limit of the function 1/(1+x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ------ x->oo 2 1 + x
$$\lim_{x \to \infty} \frac{1}{x^{2} + 1}$$
Limit(1/(1 + x^2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{x^{2} + 1}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty} \frac{1}{x^{2} + 1}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x^{2} \left(1 + \frac{1}{x^{2}}\right)}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x^{2} \left(1 + \frac{1}{x^{2}}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u^{2}}{u^{2} + 1}\right)$$
=
$$\frac{0^{2}}{0^{2} + 1} = 0$$
The final answer:
$$\lim_{x \to \infty} \frac{1}{x^{2} + 1} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{x^{2} + 1} = 0$$
$$\lim_{x \to 0^-} \frac{1}{x^{2} + 1} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{2} + 1} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{2} + 1} = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{2} + 1} = \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{2} + 1} = 0$$
More at x→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph