Mister Exam

Other calculators:


log(sin(x))/log(sin(2*x))

Limit of the function log(sin(x))/log(sin(2*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / log(sin(x)) \
 lim |-------------|
x->0+\log(sin(2*x))/
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(\sin{\left(2 x \right)} \right)}}\right)$$
Limit(log(sin(x))/log(sin(2*x)), x, 0)
The graph
One‐sided limits [src]
     / log(sin(x)) \
 lim |-------------|
x->0+\log(sin(2*x))/
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(\sin{\left(2 x \right)} \right)}}\right)$$
1
$$1$$
= 1.08750537843486
     / log(sin(x)) \
 lim |-------------|
x->0-\log(sin(2*x))/
$$\lim_{x \to 0^-}\left(\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(\sin{\left(2 x \right)} \right)}}\right)$$
1
$$1$$
= (1.07464095455102 + 0.0305228397035142j)
= (1.07464095455102 + 0.0305228397035142j)
Rapid solution [src]
1
$$1$$
Numerical answer [src]
1.08750537843486
1.08750537843486
The graph
Limit of the function log(sin(x))/log(sin(2*x))