Mister Exam

Derivative of sqrt(log(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ________
\/ log(x) 
$$\sqrt{\log{\left(x \right)}}$$
d /  ________\
--\\/ log(x) /
dx            
$$\frac{d}{d x} \sqrt{\log{\left(x \right)}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of is .

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
      1       
--------------
      ________
2*x*\/ log(x) 
$$\frac{1}{2 x \sqrt{\log{\left(x \right)}}}$$
The second derivative [src]
  /      1   \ 
 -|2 + ------| 
  \    log(x)/ 
---------------
   2   ________
4*x *\/ log(x) 
$$- \frac{2 + \frac{1}{\log{\left(x \right)}}}{4 x^{2} \sqrt{\log{\left(x \right)}}}$$
The third derivative [src]
       3           3    
1 + -------- + ---------
    4*log(x)        2   
               8*log (x)
------------------------
      3   ________      
     x *\/ log(x)       
$$\frac{1 + \frac{3}{4 \log{\left(x \right)}} + \frac{3}{8 \log{\left(x \right)}^{2}}}{x^{3} \sqrt{\log{\left(x \right)}}}$$
The graph
Derivative of sqrt(log(x))