Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of sin(3*x)/(4*x)
Limit of (sqrt(1+16*x)-sqrt(9+16*x))/sqrt(25+36*x)
Limit of cos(pi*x)
Limit of |x|
Derivative of
:
|x|
Integral of d{x}
:
|x|
Graphing y =
:
|x|
Identical expressions
|x|
module of x|
Limit of the function
/
|x|
Limit of the function |x|
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim |x| x->-oo
lim
x
→
−
∞
∣
x
∣
\lim_{x \to -\infty} \left|{x}\right|
x
→
−
∞
lim
∣
x
∣
Limit(|x|, x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
20
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
−
∞
∣
x
∣
=
∞
\lim_{x \to -\infty} \left|{x}\right| = \infty
x
→
−
∞
lim
∣
x
∣
=
∞
lim
x
→
∞
∣
x
∣
=
∞
\lim_{x \to \infty} \left|{x}\right| = \infty
x
→
∞
lim
∣
x
∣
=
∞
More at x→oo
lim
x
→
0
−
∣
x
∣
=
0
\lim_{x \to 0^-} \left|{x}\right| = 0
x
→
0
−
lim
∣
x
∣
=
0
More at x→0 from the left
lim
x
→
0
+
∣
x
∣
=
0
\lim_{x \to 0^+} \left|{x}\right| = 0
x
→
0
+
lim
∣
x
∣
=
0
More at x→0 from the right
lim
x
→
1
−
∣
x
∣
=
1
\lim_{x \to 1^-} \left|{x}\right| = 1
x
→
1
−
lim
∣
x
∣
=
1
More at x→1 from the left
lim
x
→
1
+
∣
x
∣
=
1
\lim_{x \to 1^+} \left|{x}\right| = 1
x
→
1
+
lim
∣
x
∣
=
1
More at x→1 from the right
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
The graph