Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 7^(1/(-3+x))
Limit of (3-3*x^2+4*x^4+6*x^3)/(2*x^2+7*x^4)
Limit of ((5+4*x)/(-1+5*x))^(1+3*x)
Limit of (-6-x^2-3*x+4*x^3)/(3-x^2+2*x^3)
Derivative of
:
sqrt(4+x^2)
Graphing y =
:
sqrt(4+x^2)
Integral of d{x}
:
sqrt(4+x^2)
Identical expressions
sqrt(four +x^ two)
square root of (4 plus x squared )
square root of (four plus x to the power of two)
√(4+x^2)
sqrt(4+x2)
sqrt4+x2
sqrt(4+x²)
sqrt(4+x to the power of 2)
sqrt4+x^2
Similar expressions
sqrt(4-x^2)
Limit of the function
/
sqrt(4+x^2)
Limit of the function sqrt(4+x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
________ / 2 lim \/ 4 + x x->oo
$$\lim_{x \to \infty} \sqrt{x^{2} + 4}$$
Limit(sqrt(4 + x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sqrt{x^{2} + 4} = \infty$$
$$\lim_{x \to 0^-} \sqrt{x^{2} + 4} = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{x^{2} + 4} = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{x^{2} + 4} = \sqrt{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{x^{2} + 4} = \sqrt{5}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{x^{2} + 4} = \infty$$
More at x→-oo
The graph