Mister Exam

Other calculators:


3/n^4

Limit of the function 3/n^4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /3 \
 lim |--|
n->oo| 4|
     \n /
$$\lim_{n \to \infty}\left(\frac{3}{n^{4}}\right)$$
Limit(3/n^4, n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(\frac{3}{n^{4}}\right)$$
Let's divide numerator and denominator by n^4:
$$\lim_{n \to \infty}\left(\frac{3}{n^{4}}\right)$$ =
$$\lim_{n \to \infty}\left(\frac{3 \frac{1}{n^{4}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{3 \frac{1}{n^{4}}}{1}\right) = \lim_{u \to 0^+}\left(3 u^{4}\right)$$
=
$$3 \cdot 0^{4} = 0$$

The final answer:
$$\lim_{n \to \infty}\left(\frac{3}{n^{4}}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{3}{n^{4}}\right) = 0$$
$$\lim_{n \to 0^-}\left(\frac{3}{n^{4}}\right) = \infty$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{3}{n^{4}}\right) = \infty$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{3}{n^{4}}\right) = 3$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{3}{n^{4}}\right) = 3$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{3}{n^{4}}\right) = 0$$
More at n→-oo
The graph
Limit of the function 3/n^4