Mister Exam

Other calculators:


sqrt(5-x^2)

Limit of the function sqrt(5-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
       /      2 
 lim \/  5 - x  
x->1+           
$$\lim_{x \to 1^+} \sqrt{5 - x^{2}}$$
Limit(sqrt(5 - x^2), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-} \sqrt{5 - x^{2}} = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{5 - x^{2}} = 2$$
$$\lim_{x \to \infty} \sqrt{5 - x^{2}} = \infty i$$
More at x→oo
$$\lim_{x \to 0^-} \sqrt{5 - x^{2}} = \sqrt{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{5 - x^{2}} = \sqrt{5}$$
More at x→0 from the right
$$\lim_{x \to -\infty} \sqrt{5 - x^{2}} = \infty i$$
More at x→-oo
Rapid solution [src]
2
$$2$$
One‐sided limits [src]
        ________
       /      2 
 lim \/  5 - x  
x->1+           
$$\lim_{x \to 1^+} \sqrt{5 - x^{2}}$$
2
$$2$$
= 2.0
        ________
       /      2 
 lim \/  5 - x  
x->1-           
$$\lim_{x \to 1^-} \sqrt{5 - x^{2}}$$
2
$$2$$
= 2.0
= 2.0
Numerical answer [src]
2.0
2.0
The graph
Limit of the function sqrt(5-x^2)