Mister Exam

Other calculators:


6/n^2+7/n^3

Limit of the function 6/n^2+7/n^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /6    7 \
 lim |-- + --|
n->oo| 2    3|
     \n    n /
$$\lim_{n \to \infty}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right)$$
Limit(6/n^2 + 7/n^3, n, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{n \to \infty}\left(6 n + 7\right) = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} n^{3} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{n \to \infty}\left(\frac{6 n + 7}{n^{3}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(6 n + 7\right)}{\frac{d}{d n} n^{3}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{2}{n^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{2}{n^{2}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right) = 0$$
$$\lim_{n \to 0^-}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right) = -\infty$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right) = \infty$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right) = 13$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right) = 13$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{7}{n^{3}} + \frac{6}{n^{2}}\right) = 0$$
More at n→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function 6/n^2+7/n^3