Mister Exam

Other calculators:


1/(-1+2^(-3+x))

Limit of the function 1/(-1+2^(-3+x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
          1      
 lim ------------
x->3+      -3 + x
     -1 + 2      
$$\lim_{x \to 3^+} \frac{1}{2^{x - 3} - 1}$$
Limit(1/(-1 + 2^(-3 + x)), x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
          1      
 lim ------------
x->3+      -3 + x
     -1 + 2      
$$\lim_{x \to 3^+} \frac{1}{2^{x - 3} - 1}$$
oo
$$\infty$$
= 217.347333705656
          1      
 lim ------------
x->3-      -3 + x
     -1 + 2      
$$\lim_{x \to 3^-} \frac{1}{2^{x - 3} - 1}$$
-oo
$$-\infty$$
= -218.347333705656
= -218.347333705656
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-} \frac{1}{2^{x - 3} - 1} = \infty$$
More at x→3 from the left
$$\lim_{x \to 3^+} \frac{1}{2^{x - 3} - 1} = \infty$$
$$\lim_{x \to \infty} \frac{1}{2^{x - 3} - 1} = 0$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{2^{x - 3} - 1} = - \frac{8}{7}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{2^{x - 3} - 1} = - \frac{8}{7}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{2^{x - 3} - 1} = - \frac{4}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{2^{x - 3} - 1} = - \frac{4}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{2^{x - 3} - 1} = -1$$
More at x→-oo
Numerical answer [src]
217.347333705656
217.347333705656
The graph
Limit of the function 1/(-1+2^(-3+x))