Mister Exam

Other calculators:


sin(x)/(1+cos(x))

Limit of the function sin(x)/(1+cos(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  sin(x)  \
 lim |----------|
x->0+\1 + cos(x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right)$$
Limit(sin(x)/(1 + cos(x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /  sin(x)  \
 lim |----------|
x->0+\1 + cos(x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right)$$
0
$$0$$
= 4.95349509297983e-32
     /  sin(x)  \
 lim |----------|
x->0-\1 + cos(x)/
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right)$$
0
$$0$$
= -4.95349509297983e-32
= -4.95349509297983e-32
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right) = \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)} + 1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right) = \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)} + 1}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 1}\right)$$
More at x→-oo
Numerical answer [src]
4.95349509297983e-32
4.95349509297983e-32
The graph
Limit of the function sin(x)/(1+cos(x))