Mister Exam

Other calculators:


sin(2*x)^2

Limit of the function sin(2*x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2     
 lim sin (2*x)
x->0+         
$$\lim_{x \to 0^+} \sin^{2}{\left(2 x \right)}$$
Limit(sin(2*x)^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sin^{2}{\left(2 x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sin^{2}{\left(2 x \right)} = 0$$
$$\lim_{x \to \infty} \sin^{2}{\left(2 x \right)} = \left\langle 0, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \sin^{2}{\left(2 x \right)} = \sin^{2}{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sin^{2}{\left(2 x \right)} = \sin^{2}{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sin^{2}{\left(2 x \right)} = \left\langle 0, 1\right\rangle$$
More at x→-oo
One‐sided limits [src]
        2     
 lim sin (2*x)
x->0+         
$$\lim_{x \to 0^+} \sin^{2}{\left(2 x \right)}$$
0
$$0$$
= -4.09486924217481e-30
        2     
 lim sin (2*x)
x->0-         
$$\lim_{x \to 0^-} \sin^{2}{\left(2 x \right)}$$
0
$$0$$
= -4.09486924217481e-30
= -4.09486924217481e-30
Rapid solution [src]
0
$$0$$
Numerical answer [src]
-4.09486924217481e-30
-4.09486924217481e-30
The graph
Limit of the function sin(2*x)^2