Mister Exam

Other calculators:


sin(2*x)/(2*tan(x))

Limit of the function sin(2*x)/(2*tan(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /sin(2*x)\
 lim  |--------|
x->pi+\2*tan(x)/
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
Limit(sin(2*x)/((2*tan(x))), x, pi)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to \pi^+} \tan{\left(x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\frac{d}{d x} \frac{\sin{\left(2 x \right)}}{2}}{\frac{d}{d x} \tan{\left(x \right)}}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\cos{\left(2 x \right)}}{\tan^{2}{\left(x \right)} + 1}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\cos{\left(2 x \right)}}{\tan^{2}{\left(x \right)} + 1}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
      /sin(2*x)\
 lim  |--------|
x->pi+\2*tan(x)/
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
1
$$1$$
= 1.0
      /sin(2*x)\
 lim  |--------|
x->pi-\2*tan(x)/
$$\lim_{x \to \pi^-}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right) = 1$$
More at x→pi from the left
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right) = \frac{\sin{\left(2 \right)}}{2 \tan{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right) = \frac{\sin{\left(2 \right)}}{2 \tan{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sin(2*x)/(2*tan(x))