We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to \pi^+} \tan{\left(x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to \pi^+}\left(\frac{\sin{\left(2 x \right)}}{2 \tan{\left(x \right)}}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\frac{d}{d x} \frac{\sin{\left(2 x \right)}}{2}}{\frac{d}{d x} \tan{\left(x \right)}}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\cos{\left(2 x \right)}}{\tan^{2}{\left(x \right)} + 1}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\cos{\left(2 x \right)}}{\tan^{2}{\left(x \right)} + 1}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)