$$\lim_{x \to 0^-}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = \left\langle - \frac{1}{2}, \frac{1}{2}\right\rangle$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = \frac{\sin{\left(2 \right)}}{2}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = \frac{\sin{\left(2 \right)}}{2}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\sin{\left(2 x \right)}}{2}\right) = \left\langle - \frac{1}{2}, \frac{1}{2}\right\rangle$$
More at x→-oo