Mister Exam

Other calculators:


sin(2*x)/log(1+x)

Limit of the function sin(2*x)/log(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / sin(2*x) \
 lim |----------|
x->0+\log(1 + x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right)$$
Limit(sin(2*x)/log(1 + x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \log{\left(x + 1 \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(2 x \right)}}{\frac{d}{d x} \log{\left(x + 1 \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(2 \left(x + 1\right) \cos{\left(2 x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(2 x + 2\right)$$
=
$$\lim_{x \to 0^+}\left(2 x + 2\right)$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
2
$$2$$
One‐sided limits [src]
     / sin(2*x) \
 lim |----------|
x->0+\log(1 + x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right)$$
2
$$2$$
= 2.0
     / sin(2*x) \
 lim |----------|
x->0-\log(1 + x)/
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right)$$
2
$$2$$
= 2.0
= 2.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right) = 2$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right) = \frac{\sin{\left(2 \right)}}{\log{\left(2 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right) = \frac{\sin{\left(2 \right)}}{\log{\left(2 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(2 x \right)}}{\log{\left(x + 1 \right)}}\right) = 0$$
More at x→-oo
Numerical answer [src]
2.0
2.0
The graph
Limit of the function sin(2*x)/log(1+x)