Mister Exam

Other calculators:


(-2*sin(x)+sin(2*x))/x

Limit of the function (-2*sin(x)+sin(2*x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-2*sin(x) + sin(2*x)\
 lim |--------------------|
x->0+\         x          /
$$\lim_{x \to 0^+}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right)$$
Limit((-2*sin(x) + sin(2*x))/x, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}\right)}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+}\left(- 2 \cos{\left(x \right)} + 2 \cos{\left(2 x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(- 2 \cos{\left(x \right)} + 2 \cos{\left(2 x \right)}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /-2*sin(x) + sin(2*x)\
 lim |--------------------|
x->0+\         x          /
$$\lim_{x \to 0^+}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right)$$
0
$$0$$
= -1.68445193407949e-31
     /-2*sin(x) + sin(2*x)\
 lim |--------------------|
x->0-\         x          /
$$\lim_{x \to 0^-}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right)$$
0
$$0$$
= -1.68445193407949e-31
= -1.68445193407949e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right) = - 2 \sin{\left(1 \right)} + \sin{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right) = - 2 \sin{\left(1 \right)} + \sin{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{- 2 \sin{\left(x \right)} + \sin{\left(2 x \right)}}{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
-1.68445193407949e-31
-1.68445193407949e-31
The graph
Limit of the function (-2*sin(x)+sin(2*x))/x