Mister Exam

Other calculators:


sin(3*x)/log(1+2*x)

Limit of the function sin(3*x)/log(1+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  sin(3*x)  \
 lim |------------|
x->0+\log(1 + 2*x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right)$$
Limit(sin(3*x)/log(1 + 2*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(3 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \log{\left(2 x + 1 \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(3 x \right)}}{\frac{d}{d x} \log{\left(2 x + 1 \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(3 \left(x + \frac{1}{2}\right) \cos{\left(3 x \right)}\right)$$
=
$$\lim_{x \to 0^+} \frac{3}{2}$$
=
$$\lim_{x \to 0^+} \frac{3}{2}$$
=
$$\frac{3}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
3/2
$$\frac{3}{2}$$
One‐sided limits [src]
     /  sin(3*x)  \
 lim |------------|
x->0+\log(1 + 2*x)/
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right)$$
3/2
$$\frac{3}{2}$$
= 1.5
     /  sin(3*x)  \
 lim |------------|
x->0-\log(1 + 2*x)/
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right)$$
3/2
$$\frac{3}{2}$$
= 1.5
= 1.5
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right) = \frac{3}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right) = \frac{3}{2}$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right) = \frac{\sin{\left(3 \right)}}{\log{\left(3 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right) = \frac{\sin{\left(3 \right)}}{\log{\left(3 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}\right) = 0$$
More at x→-oo
Numerical answer [src]
1.5
1.5
The graph
Limit of the function sin(3*x)/log(1+2*x)