$$\lim_{x \to \infty} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 0$$ $$\lim_{x \to 0^-} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = e^{\gamma}$$ More at x→0 from the left $$\lim_{x \to 0^+} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = e^{\gamma}$$ More at x→0 from the right $$\lim_{x \to 1^-} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 1$$ More at x→1 from the left $$\lim_{x \to 1^+} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 1$$ More at x→1 from the right $$\lim_{x \to -\infty} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 1$$ More at x→-oo