Mister Exam

Other calculators:

Limit of the function (1/factorial(x))^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         ____
        / 1  
 lim x /  -- 
x->oo\/   x! 
$$\lim_{x \to \infty} \left(\frac{1}{x!}\right)^{\frac{1}{x}}$$
Limit((1/factorial(x))^(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 0$$
$$\lim_{x \to 0^-} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = e^{\gamma}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = e^{\gamma}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{1}{x!}\right)^{\frac{1}{x}} = 1$$
More at x→-oo