sin(3*x) ------------ log(1 + 2*x)
sin(3*x)/log(1 + 2*x)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3*cos(3*x) 2*sin(3*x)
------------ - -----------------------
log(1 + 2*x) 2
(1 + 2*x)*log (1 + 2*x)
/ 2 \
4*|1 + ------------|*sin(3*x)
12*cos(3*x) \ log(1 + 2*x)/
-9*sin(3*x) - ---------------------- + -----------------------------
(1 + 2*x)*log(1 + 2*x) 2
(1 + 2*x) *log(1 + 2*x)
--------------------------------------------------------------------
log(1 + 2*x)
/ 3 3 \
16*|1 + ------------ + -------------|*sin(3*x) / 2 \
| log(1 + 2*x) 2 | 36*|1 + ------------|*cos(3*x)
54*sin(3*x) \ log (1 + 2*x)/ \ log(1 + 2*x)/
-27*cos(3*x) + ---------------------- - ---------------------------------------------- + ------------------------------
(1 + 2*x)*log(1 + 2*x) 3 2
(1 + 2*x) *log(1 + 2*x) (1 + 2*x) *log(1 + 2*x)
-----------------------------------------------------------------------------------------------------------------------
log(1 + 2*x)