Mister Exam

Other calculators

Derivative of sin(3*x)/log(1+2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  sin(3*x)  
------------
log(1 + 2*x)
$$\frac{\sin{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}}$$
sin(3*x)/log(1 + 2*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 3*cos(3*x)           2*sin(3*x)      
------------ - -----------------------
log(1 + 2*x)                2         
               (1 + 2*x)*log (1 + 2*x)
$$\frac{3 \cos{\left(3 x \right)}}{\log{\left(2 x + 1 \right)}} - \frac{2 \sin{\left(3 x \right)}}{\left(2 x + 1\right) \log{\left(2 x + 1 \right)}^{2}}$$
The second derivative [src]
                                         /         2      \         
                                       4*|1 + ------------|*sin(3*x)
                   12*cos(3*x)           \    log(1 + 2*x)/         
-9*sin(3*x) - ---------------------- + -----------------------------
              (1 + 2*x)*log(1 + 2*x)               2                
                                          (1 + 2*x) *log(1 + 2*x)   
--------------------------------------------------------------------
                            log(1 + 2*x)                            
$$\frac{\frac{4 \left(1 + \frac{2}{\log{\left(2 x + 1 \right)}}\right) \sin{\left(3 x \right)}}{\left(2 x + 1\right)^{2} \log{\left(2 x + 1 \right)}} - 9 \sin{\left(3 x \right)} - \frac{12 \cos{\left(3 x \right)}}{\left(2 x + 1\right) \log{\left(2 x + 1 \right)}}}{\log{\left(2 x + 1 \right)}}$$
The third derivative [src]
                                           /         3               3      \                                          
                                        16*|1 + ------------ + -------------|*sin(3*x)      /         2      \         
                                           |    log(1 + 2*x)      2         |            36*|1 + ------------|*cos(3*x)
                    54*sin(3*x)            \                   log (1 + 2*x)/               \    log(1 + 2*x)/         
-27*cos(3*x) + ---------------------- - ---------------------------------------------- + ------------------------------
               (1 + 2*x)*log(1 + 2*x)                       3                                        2                 
                                                   (1 + 2*x) *log(1 + 2*x)                  (1 + 2*x) *log(1 + 2*x)    
-----------------------------------------------------------------------------------------------------------------------
                                                      log(1 + 2*x)                                                     
$$\frac{\frac{36 \left(1 + \frac{2}{\log{\left(2 x + 1 \right)}}\right) \cos{\left(3 x \right)}}{\left(2 x + 1\right)^{2} \log{\left(2 x + 1 \right)}} - 27 \cos{\left(3 x \right)} + \frac{54 \sin{\left(3 x \right)}}{\left(2 x + 1\right) \log{\left(2 x + 1 \right)}} - \frac{16 \left(1 + \frac{3}{\log{\left(2 x + 1 \right)}} + \frac{3}{\log{\left(2 x + 1 \right)}^{2}}\right) \sin{\left(3 x \right)}}{\left(2 x + 1\right)^{3} \log{\left(2 x + 1 \right)}}}{\log{\left(2 x + 1 \right)}}$$