Mister Exam

Other calculators:


sin(tan(2*x))/asin(3*x)

Limit of the function sin(tan(2*x))/asin(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(tan(2*x))\
 lim |-------------|
x->0+\  asin(3*x)  /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right)$$
Limit(sin(tan(2*x))/asin(3*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(\tan{\left(2 x \right)} \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \operatorname{asin}{\left(3 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(\tan{\left(2 x \right)} \right)}}{\frac{d}{d x} \operatorname{asin}{\left(3 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sqrt{1 - 9 x^{2}} \left(2 \tan^{2}{\left(2 x \right)} + 2\right) \cos{\left(\tan{\left(2 x \right)} \right)}}{3}\right)$$
=
$$\lim_{x \to 0^+} \frac{2}{3}$$
=
$$\lim_{x \to 0^+} \frac{2}{3}$$
=
$$\frac{2}{3}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
2/3
$$\frac{2}{3}$$
One‐sided limits [src]
     /sin(tan(2*x))\
 lim |-------------|
x->0+\  asin(3*x)  /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right)$$
2/3
$$\frac{2}{3}$$
= 0.666666666666667
     /sin(tan(2*x))\
 lim |-------------|
x->0-\  asin(3*x)  /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right)$$
2/3
$$\frac{2}{3}$$
= 0.666666666666667
= 0.666666666666667
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right) = \frac{2}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right) = \frac{2}{3}$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right) = \frac{\sin{\left(\tan{\left(2 \right)} \right)}}{\operatorname{asin}{\left(3 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right) = \frac{\sin{\left(\tan{\left(2 \right)} \right)}}{\operatorname{asin}{\left(3 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(\tan{\left(2 x \right)} \right)}}{\operatorname{asin}{\left(3 x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
0.666666666666667
0.666666666666667
The graph
Limit of the function sin(tan(2*x))/asin(3*x)