Mister Exam

Other calculators:


sin(6*pi*x)/sin(pi*x)

Limit of the function sin(6*pi*x)/sin(pi*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(6*pi*x)\
 lim |-----------|
x->1+\ sin(pi*x) /
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right)$$
Limit(sin((6*pi)*x)/sin(pi*x), x, 1)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+} \sin{\left(6 \pi x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+} \sin{\left(\pi x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \sin{\left(6 \pi x \right)}}{\frac{d}{d x} \sin{\left(\pi x \right)}}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{6 \cos{\left(6 \pi x \right)}}{\cos{\left(\pi x \right)}}\right)$$
=
$$\lim_{x \to 1^+} -6$$
=
$$\lim_{x \to 1^+} -6$$
=
$$-6$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
-6
$$-6$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right) = -6$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right) = -6$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right) = 6$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right) = 6$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right)$$
More at x→-oo
One‐sided limits [src]
     /sin(6*pi*x)\
 lim |-----------|
x->1+\ sin(pi*x) /
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right)$$
-6
$$-6$$
= -6.0
     /sin(6*pi*x)\
 lim |-----------|
x->1-\ sin(pi*x) /
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(6 \pi x \right)}}{\sin{\left(\pi x \right)}}\right)$$
-6
$$-6$$
= -6.0
= -6.0
Numerical answer [src]
-6.0
-6.0
The graph
Limit of the function sin(6*pi*x)/sin(pi*x)