Mister Exam

Other calculators:


sin(1/z)

Limit of the function sin(1/z)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /  1\
 lim sin|1*-|
z->oo   \  z/
$$\lim_{z \to \infty} \sin{\left(1 \cdot \frac{1}{z} \right)}$$
Limit(sin(1/z), z, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits z→0, -oo, +oo, 1
$$\lim_{z \to \infty} \sin{\left(1 \cdot \frac{1}{z} \right)} = 0$$
$$\lim_{z \to 0^-} \sin{\left(1 \cdot \frac{1}{z} \right)} = \left\langle -1, 1\right\rangle$$
More at z→0 from the left
$$\lim_{z \to 0^+} \sin{\left(1 \cdot \frac{1}{z} \right)} = \left\langle -1, 1\right\rangle$$
More at z→0 from the right
$$\lim_{z \to 1^-} \sin{\left(1 \cdot \frac{1}{z} \right)} = \sin{\left(1 \right)}$$
More at z→1 from the left
$$\lim_{z \to 1^+} \sin{\left(1 \cdot \frac{1}{z} \right)} = \sin{\left(1 \right)}$$
More at z→1 from the right
$$\lim_{z \to -\infty} \sin{\left(1 \cdot \frac{1}{z} \right)} = 0$$
More at z→-oo
The graph
Limit of the function sin(1/z)