$$\lim_{x \to 0^-}\left(\frac{e^{1 \cdot \frac{1}{x}}}{x}\right) = \infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{e^{1 \cdot \frac{1}{x}}}{x}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{e^{1 \cdot \frac{1}{x}}}{x}\right) = 0$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{e^{1 \cdot \frac{1}{x}}}{x}\right) = e$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{e^{1 \cdot \frac{1}{x}}}{x}\right) = e$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{e^{1 \cdot \frac{1}{x}}}{x}\right) = 0$$
More at x→-oo