$$\lim_{x \to 0^-} \sec^{2}{\left(x \right)} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \sec^{2}{\left(x \right)} = 1$$ $$\lim_{x \to \infty} \sec^{2}{\left(x \right)}$$ More at x→oo $$\lim_{x \to 1^-} \sec^{2}{\left(x \right)} = \frac{1}{\cos^{2}{\left(1 \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+} \sec^{2}{\left(x \right)} = \frac{1}{\cos^{2}{\left(1 \right)}}$$ More at x→1 from the right $$\lim_{x \to -\infty} \sec^{2}{\left(x \right)}$$ More at x→-oo