Mister Exam

Other calculators:


sec(x)^2

Limit of the function sec(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2   
 lim sec (x)
x->0+       
limx0+sec2(x)\lim_{x \to 0^+} \sec^{2}{\left(x \right)}
Limit(sec(x)^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101001000
One‐sided limits [src]
        2   
 lim sec (x)
x->0+       
limx0+sec2(x)\lim_{x \to 0^+} \sec^{2}{\left(x \right)}
1
11
= 1.0
        2   
 lim sec (x)
x->0-       
limx0sec2(x)\lim_{x \to 0^-} \sec^{2}{\left(x \right)}
1
11
= 1.0
= 1.0
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limx0sec2(x)=1\lim_{x \to 0^-} \sec^{2}{\left(x \right)} = 1
More at x→0 from the left
limx0+sec2(x)=1\lim_{x \to 0^+} \sec^{2}{\left(x \right)} = 1
limxsec2(x)\lim_{x \to \infty} \sec^{2}{\left(x \right)}
More at x→oo
limx1sec2(x)=1cos2(1)\lim_{x \to 1^-} \sec^{2}{\left(x \right)} = \frac{1}{\cos^{2}{\left(1 \right)}}
More at x→1 from the left
limx1+sec2(x)=1cos2(1)\lim_{x \to 1^+} \sec^{2}{\left(x \right)} = \frac{1}{\cos^{2}{\left(1 \right)}}
More at x→1 from the right
limxsec2(x)\lim_{x \to -\infty} \sec^{2}{\left(x \right)}
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sec(x)^2