Mister Exam

Other calculators:


(1-x)^(1/x)

Limit of the function (1-x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _______
 lim \/ 1 - x 
x->0+         
limx0+(1x)1x\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}}
Limit((1 - x)^(1/x), x, 0)
Detail solution
Let's take the limit
limx0+(1x)1x\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}}
transform
do replacement
u=1(1)xu = \frac{1}{\left(-1\right) x}
then
limx0+(111x)1x\lim_{x \to 0^+} \left(1 - \frac{1}{\frac{1}{x}}\right)^{\frac{1}{x}} =
=
limu0+(1+1u)u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- u}
=
limu0+(1+1u)u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- u}
=
((limu0+(1+1u)u))1\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-1}
The limit
limu0+(1+1u)u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu0+(1+1u)u))1=e1\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-1} = e^{-1}

The final answer:
limx0+(1x)1x=e1\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}} = e^{-1}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.01.0
One‐sided limits [src]
     x _______
 lim \/ 1 - x 
x->0+         
limx0+(1x)1x\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}}
 -1
e  
e1e^{-1}
= 0.367879441171442
     x _______
 lim \/ 1 - x 
x->0-         
limx0(1x)1x\lim_{x \to 0^-} \left(1 - x\right)^{\frac{1}{x}}
 -1
e  
e1e^{-1}
= 0.367879441171442
= 0.367879441171442
Other limits x→0, -oo, +oo, 1
limx0(1x)1x=e1\lim_{x \to 0^-} \left(1 - x\right)^{\frac{1}{x}} = e^{-1}
More at x→0 from the left
limx0+(1x)1x=e1\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}} = e^{-1}
limx(1x)1x=1\lim_{x \to \infty} \left(1 - x\right)^{\frac{1}{x}} = 1
More at x→oo
limx1(1x)1x=0\lim_{x \to 1^-} \left(1 - x\right)^{\frac{1}{x}} = 0
More at x→1 from the left
limx1+(1x)1x=0\lim_{x \to 1^+} \left(1 - x\right)^{\frac{1}{x}} = 0
More at x→1 from the right
limx(1x)1x=1\lim_{x \to -\infty} \left(1 - x\right)^{\frac{1}{x}} = 1
More at x→-oo
Rapid solution [src]
 -1
e  
e1e^{-1}
Numerical answer [src]
0.367879441171442
0.367879441171442
The graph
Limit of the function (1-x)^(1/x)