Mister Exam

Other calculators:


(1-x)^(1/x)

Limit of the function (1-x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _______
 lim \/ 1 - x 
x->0+         
$$\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}}$$
Limit((1 - x)^(1/x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}}$$
transform
do replacement
$$u = \frac{1}{\left(-1\right) x}$$
then
$$\lim_{x \to 0^+} \left(1 - \frac{1}{\frac{1}{x}}\right)^{\frac{1}{x}}$$ =
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- u}$$
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- u}$$
=
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-1}$$
The limit
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-1} = e^{-1}$$

The final answer:
$$\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}} = e^{-1}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     x _______
 lim \/ 1 - x 
x->0+         
$$\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}}$$
 -1
e  
$$e^{-1}$$
= 0.367879441171442
     x _______
 lim \/ 1 - x 
x->0-         
$$\lim_{x \to 0^-} \left(1 - x\right)^{\frac{1}{x}}$$
 -1
e  
$$e^{-1}$$
= 0.367879441171442
= 0.367879441171442
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(1 - x\right)^{\frac{1}{x}} = e^{-1}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(1 - x\right)^{\frac{1}{x}} = e^{-1}$$
$$\lim_{x \to \infty} \left(1 - x\right)^{\frac{1}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} \left(1 - x\right)^{\frac{1}{x}} = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(1 - x\right)^{\frac{1}{x}} = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(1 - x\right)^{\frac{1}{x}} = 1$$
More at x→-oo
Rapid solution [src]
 -1
e  
$$e^{-1}$$
Numerical answer [src]
0.367879441171442
0.367879441171442
The graph
Limit of the function (1-x)^(1/x)