Mister Exam

Other calculators:


(5+3*x)/(-5+x)

Limit of the function (5+3*x)/(-5+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /5 + 3*x\
 lim |-------|
x->7+\ -5 + x/
limx7+(3x+5x5)\lim_{x \to 7^+}\left(\frac{3 x + 5}{x - 5}\right)
Limit((5 + 3*x)/(-5 + x), x, 7)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-12.5-10.0-7.5-5.0-2.50.02.55.07.510.012.5-500500
Other limits x→0, -oo, +oo, 1
limx7(3x+5x5)=13\lim_{x \to 7^-}\left(\frac{3 x + 5}{x - 5}\right) = 13
More at x→7 from the left
limx7+(3x+5x5)=13\lim_{x \to 7^+}\left(\frac{3 x + 5}{x - 5}\right) = 13
limx(3x+5x5)=3\lim_{x \to \infty}\left(\frac{3 x + 5}{x - 5}\right) = 3
More at x→oo
limx0(3x+5x5)=1\lim_{x \to 0^-}\left(\frac{3 x + 5}{x - 5}\right) = -1
More at x→0 from the left
limx0+(3x+5x5)=1\lim_{x \to 0^+}\left(\frac{3 x + 5}{x - 5}\right) = -1
More at x→0 from the right
limx1(3x+5x5)=2\lim_{x \to 1^-}\left(\frac{3 x + 5}{x - 5}\right) = -2
More at x→1 from the left
limx1+(3x+5x5)=2\lim_{x \to 1^+}\left(\frac{3 x + 5}{x - 5}\right) = -2
More at x→1 from the right
limx(3x+5x5)=3\lim_{x \to -\infty}\left(\frac{3 x + 5}{x - 5}\right) = 3
More at x→-oo
One‐sided limits [src]
     /5 + 3*x\
 lim |-------|
x->7+\ -5 + x/
limx7+(3x+5x5)\lim_{x \to 7^+}\left(\frac{3 x + 5}{x - 5}\right)
13
1313
= 13.0
     /5 + 3*x\
 lim |-------|
x->7-\ -5 + x/
limx7(3x+5x5)\lim_{x \to 7^-}\left(\frac{3 x + 5}{x - 5}\right)
13
1313
= 13.0
= 13.0
Rapid solution [src]
13
1313
Numerical answer [src]
13.0
13.0
The graph
Limit of the function (5+3*x)/(-5+x)