Mister Exam

Other calculators:


(5+3*x)/(-5+x)

Limit of the function (5+3*x)/(-5+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /5 + 3*x\
 lim |-------|
x->7+\ -5 + x/
$$\lim_{x \to 7^+}\left(\frac{3 x + 5}{x - 5}\right)$$
Limit((5 + 3*x)/(-5 + x), x, 7)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 7^-}\left(\frac{3 x + 5}{x - 5}\right) = 13$$
More at x→7 from the left
$$\lim_{x \to 7^+}\left(\frac{3 x + 5}{x - 5}\right) = 13$$
$$\lim_{x \to \infty}\left(\frac{3 x + 5}{x - 5}\right) = 3$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{3 x + 5}{x - 5}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{3 x + 5}{x - 5}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{3 x + 5}{x - 5}\right) = -2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{3 x + 5}{x - 5}\right) = -2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{3 x + 5}{x - 5}\right) = 3$$
More at x→-oo
One‐sided limits [src]
     /5 + 3*x\
 lim |-------|
x->7+\ -5 + x/
$$\lim_{x \to 7^+}\left(\frac{3 x + 5}{x - 5}\right)$$
13
$$13$$
= 13.0
     /5 + 3*x\
 lim |-------|
x->7-\ -5 + x/
$$\lim_{x \to 7^-}\left(\frac{3 x + 5}{x - 5}\right)$$
13
$$13$$
= 13.0
= 13.0
Rapid solution [src]
13
$$13$$
Numerical answer [src]
13.0
13.0
The graph
Limit of the function (5+3*x)/(-5+x)