$$\lim_{x \to 7^-}\left(\frac{3 x + 5}{x - 5}\right) = 13$$ More at x→7 from the left $$\lim_{x \to 7^+}\left(\frac{3 x + 5}{x - 5}\right) = 13$$ $$\lim_{x \to \infty}\left(\frac{3 x + 5}{x - 5}\right) = 3$$ More at x→oo $$\lim_{x \to 0^-}\left(\frac{3 x + 5}{x - 5}\right) = -1$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{3 x + 5}{x - 5}\right) = -1$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{3 x + 5}{x - 5}\right) = -2$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{3 x + 5}{x - 5}\right) = -2$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{3 x + 5}{x - 5}\right) = 3$$ More at x→-oo