Mister Exam

Other calculators:


1+y^2

Limit of the function 1+y^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2\
 lim \1 + y /
y->oo        
limy(y2+1)\lim_{y \to \infty}\left(y^{2} + 1\right)
Limit(1 + y^2, y, oo, dir='-')
Detail solution
Let's take the limit
limy(y2+1)\lim_{y \to \infty}\left(y^{2} + 1\right)
Let's divide numerator and denominator by y^2:
limy(y2+1)\lim_{y \to \infty}\left(y^{2} + 1\right) =
limy(1+1y21y2)\lim_{y \to \infty}\left(\frac{1 + \frac{1}{y^{2}}}{\frac{1}{y^{2}}}\right)
Do Replacement
u=1yu = \frac{1}{y}
then
limy(1+1y21y2)=limu0+(u2+1u2)\lim_{y \to \infty}\left(\frac{1 + \frac{1}{y^{2}}}{\frac{1}{y^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{u^{2} + 1}{u^{2}}\right)
=
02+10=\frac{0^{2} + 1}{0} = \infty

The final answer:
limy(y2+1)=\lim_{y \to \infty}\left(y^{2} + 1\right) = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100200
Rapid solution [src]
oo
\infty
Other limits y→0, -oo, +oo, 1
limy(y2+1)=\lim_{y \to \infty}\left(y^{2} + 1\right) = \infty
limy0(y2+1)=1\lim_{y \to 0^-}\left(y^{2} + 1\right) = 1
More at y→0 from the left
limy0+(y2+1)=1\lim_{y \to 0^+}\left(y^{2} + 1\right) = 1
More at y→0 from the right
limy1(y2+1)=2\lim_{y \to 1^-}\left(y^{2} + 1\right) = 2
More at y→1 from the left
limy1+(y2+1)=2\lim_{y \to 1^+}\left(y^{2} + 1\right) = 2
More at y→1 from the right
limy(y2+1)=\lim_{y \to -\infty}\left(y^{2} + 1\right) = \infty
More at y→-oo
The graph
Limit of the function 1+y^2