Mister Exam

Other calculators:


1+y^2

Limit of the function 1+y^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2\
 lim \1 + y /
y->oo        
$$\lim_{y \to \infty}\left(y^{2} + 1\right)$$
Limit(1 + y^2, y, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{y \to \infty}\left(y^{2} + 1\right)$$
Let's divide numerator and denominator by y^2:
$$\lim_{y \to \infty}\left(y^{2} + 1\right)$$ =
$$\lim_{y \to \infty}\left(\frac{1 + \frac{1}{y^{2}}}{\frac{1}{y^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{y}$$
then
$$\lim_{y \to \infty}\left(\frac{1 + \frac{1}{y^{2}}}{\frac{1}{y^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{u^{2} + 1}{u^{2}}\right)$$
=
$$\frac{0^{2} + 1}{0} = \infty$$

The final answer:
$$\lim_{y \to \infty}\left(y^{2} + 1\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to \infty}\left(y^{2} + 1\right) = \infty$$
$$\lim_{y \to 0^-}\left(y^{2} + 1\right) = 1$$
More at y→0 from the left
$$\lim_{y \to 0^+}\left(y^{2} + 1\right) = 1$$
More at y→0 from the right
$$\lim_{y \to 1^-}\left(y^{2} + 1\right) = 2$$
More at y→1 from the left
$$\lim_{y \to 1^+}\left(y^{2} + 1\right) = 2$$
More at y→1 from the right
$$\lim_{y \to -\infty}\left(y^{2} + 1\right) = \infty$$
More at y→-oo
The graph
Limit of the function 1+y^2