Integral of 1+y^2 dy
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of yn is n+1yn+1 when n=−1:
∫y2dy=3y3
-
The integral of a constant is the constant times the variable of integration:
∫1dy=y
The result is: 3y3+y
-
Add the constant of integration:
3y3+y+constant
The answer is:
3y3+y+constant
The answer (Indefinite)
[src]
/
| 3
| / 2\ y
| \1 + y / dy = C + y + --
| 3
/
∫(y2+1)dy=C+3y3+y
The graph
Use the examples entering the upper and lower limits of integration.