Mister Exam

Other calculators

Integral of 1+y^2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

Detail solution
  1. Integrate term-by-term:

    1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

      y2dy=y33\int y^{2}\, dy = \frac{y^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      1dy=y\int 1\, dy = y

    The result is: y33+y\frac{y^{3}}{3} + y

  2. Add the constant of integration:

    y33+y+constant\frac{y^{3}}{3} + y+ \mathrm{constant}


The answer is:

y33+y+constant\frac{y^{3}}{3} + y+ \mathrm{constant}

The answer (Indefinite) [src]
  /                        
 |                        3
 | /     2\              y 
 | \1 + y / dy = C + y + --
 |                       3 
/                          
(y2+1)dy=C+y33+y\int \left(y^{2} + 1\right)\, dy = C + \frac{y^{3}}{3} + y
The graph
1.03.01.21.41.61.82.02.22.42.62.8020
The answer [src]
32/3
323\frac{32}{3}
=
=
32/3
323\frac{32}{3}
32/3
Numerical answer [src]
10.6666666666667
10.6666666666667

    Use the examples entering the upper and lower limits of integration.