$$\lim_{x \to 2^-}\left(\frac{x + 1}{2 - x}\right) = -\infty$$ More at x→2 from the left $$\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right) = -\infty$$ $$\lim_{x \to \infty}\left(\frac{x + 1}{2 - x}\right) = -1$$ More at x→oo $$\lim_{x \to 0^-}\left(\frac{x + 1}{2 - x}\right) = \frac{1}{2}$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{x + 1}{2 - x}\right) = \frac{1}{2}$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{x + 1}{2 - x}\right) = 2$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{x + 1}{2 - x}\right) = 2$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{x + 1}{2 - x}\right) = -1$$ More at x→-oo