Mister Exam

Other calculators:


(1+x)/(2-x)

Limit of the function (1+x)/(2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 + x\
 lim |-----|
x->2+\2 - x/
limx2+(x+12x)\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right)
Limit((1 + x)/(2 - x), x, 2)
Detail solution
Let's take the limit
limx2+(x+12x)\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right)
transform
limx2+(x+12x)\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right)
=
limx2+(x+12x)\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right)
=
limx2+(x+1x2)=\lim_{x \to 2^+}\left(- \frac{x + 1}{x - 2}\right) =
False

= -oo

The final answer:
limx2+(x+12x)=\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right) = -\infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0-3.0-2.0-1.04.00.01.02.03.0-500500
Rapid solution [src]
-oo
-\infty
One‐sided limits [src]
     /1 + x\
 lim |-----|
x->2+\2 - x/
limx2+(x+12x)\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right)
-oo
-\infty
= -454.0
     /1 + x\
 lim |-----|
x->2-\2 - x/
limx2(x+12x)\lim_{x \to 2^-}\left(\frac{x + 1}{2 - x}\right)
oo
\infty
= 452.0
= 452.0
Other limits x→0, -oo, +oo, 1
limx2(x+12x)=\lim_{x \to 2^-}\left(\frac{x + 1}{2 - x}\right) = -\infty
More at x→2 from the left
limx2+(x+12x)=\lim_{x \to 2^+}\left(\frac{x + 1}{2 - x}\right) = -\infty
limx(x+12x)=1\lim_{x \to \infty}\left(\frac{x + 1}{2 - x}\right) = -1
More at x→oo
limx0(x+12x)=12\lim_{x \to 0^-}\left(\frac{x + 1}{2 - x}\right) = \frac{1}{2}
More at x→0 from the left
limx0+(x+12x)=12\lim_{x \to 0^+}\left(\frac{x + 1}{2 - x}\right) = \frac{1}{2}
More at x→0 from the right
limx1(x+12x)=2\lim_{x \to 1^-}\left(\frac{x + 1}{2 - x}\right) = 2
More at x→1 from the left
limx1+(x+12x)=2\lim_{x \to 1^+}\left(\frac{x + 1}{2 - x}\right) = 2
More at x→1 from the right
limx(x+12x)=1\lim_{x \to -\infty}\left(\frac{x + 1}{2 - x}\right) = -1
More at x→-oo
Numerical answer [src]
-454.0
-454.0
The graph
Limit of the function (1+x)/(2-x)