Mister Exam

Derivative of (1+x)/(2-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 + x
-----
2 - x
x+12x\frac{x + 1}{2 - x}
(1 + x)/(2 - x)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x+1f{\left(x \right)} = x + 1 and g(x)=2xg{\left(x \right)} = 2 - x.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x+1x + 1 term by term:

      1. The derivative of the constant 11 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 2x2 - x term by term:

      1. The derivative of the constant 22 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      The result is: 1-1

    Now plug in to the quotient rule:

    3(2x)2\frac{3}{\left(2 - x\right)^{2}}

  2. Now simplify:

    3(x2)2\frac{3}{\left(x - 2\right)^{2}}


The answer is:

3(x2)2\frac{3}{\left(x - 2\right)^{2}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  1      1 + x  
----- + --------
2 - x          2
        (2 - x) 
12x+x+1(2x)2\frac{1}{2 - x} + \frac{x + 1}{\left(2 - x\right)^{2}}
The second derivative [src]
  /    1 + x \
2*|1 - ------|
  \    -2 + x/
--------------
          2   
  (-2 + x)    
2(1x+1x2)(x2)2\frac{2 \left(1 - \frac{x + 1}{x - 2}\right)}{\left(x - 2\right)^{2}}
The third derivative [src]
  /     1 + x \
6*|-1 + ------|
  \     -2 + x/
---------------
           3   
   (-2 + x)    
6(1+x+1x2)(x2)3\frac{6 \left(-1 + \frac{x + 1}{x - 2}\right)}{\left(x - 2\right)^{3}}