Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (3+x^2-4*x)/(-9+x^2)
Limit of (-8+x^2+2*x)/(8-x^3)
Limit of (1+5*x)*(-1+5*x)
Limit of (5-3*x^2-2*x)/(3+x+x^2)
Graphing y =
:
1+2*x
Derivative of
:
1+2*x
The double integral of
:
1+2*x
Identical expressions
one + two *x
1 plus 2 multiply by x
one plus two multiply by x
1+2x
Similar expressions
(-1+2^x)/sqrt(x+sin(x))
1-2*x
Limit of the function
/
1+2*x
Limit of the function 1+2*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (1 + 2*x) x->3+
lim
x
→
3
+
(
2
x
+
1
)
\lim_{x \to 3^+}\left(2 x + 1\right)
x
→
3
+
lim
(
2
x
+
1
)
Limit(1 + 2*x, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
6
0
1
2
3
4
5
-6
-5
-4
-3
-2
-1
-25
25
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
3
−
(
2
x
+
1
)
=
7
\lim_{x \to 3^-}\left(2 x + 1\right) = 7
x
→
3
−
lim
(
2
x
+
1
)
=
7
More at x→3 from the left
lim
x
→
3
+
(
2
x
+
1
)
=
7
\lim_{x \to 3^+}\left(2 x + 1\right) = 7
x
→
3
+
lim
(
2
x
+
1
)
=
7
lim
x
→
∞
(
2
x
+
1
)
=
∞
\lim_{x \to \infty}\left(2 x + 1\right) = \infty
x
→
∞
lim
(
2
x
+
1
)
=
∞
More at x→oo
lim
x
→
0
−
(
2
x
+
1
)
=
1
\lim_{x \to 0^-}\left(2 x + 1\right) = 1
x
→
0
−
lim
(
2
x
+
1
)
=
1
More at x→0 from the left
lim
x
→
0
+
(
2
x
+
1
)
=
1
\lim_{x \to 0^+}\left(2 x + 1\right) = 1
x
→
0
+
lim
(
2
x
+
1
)
=
1
More at x→0 from the right
lim
x
→
1
−
(
2
x
+
1
)
=
3
\lim_{x \to 1^-}\left(2 x + 1\right) = 3
x
→
1
−
lim
(
2
x
+
1
)
=
3
More at x→1 from the left
lim
x
→
1
+
(
2
x
+
1
)
=
3
\lim_{x \to 1^+}\left(2 x + 1\right) = 3
x
→
1
+
lim
(
2
x
+
1
)
=
3
More at x→1 from the right
lim
x
→
−
∞
(
2
x
+
1
)
=
−
∞
\lim_{x \to -\infty}\left(2 x + 1\right) = -\infty
x
→
−
∞
lim
(
2
x
+
1
)
=
−
∞
More at x→-oo
Rapid solution
[src]
7
7
7
7
Expand and simplify
One‐sided limits
[src]
lim (1 + 2*x) x->3+
lim
x
→
3
+
(
2
x
+
1
)
\lim_{x \to 3^+}\left(2 x + 1\right)
x
→
3
+
lim
(
2
x
+
1
)
7
7
7
7
= 7.0
lim (1 + 2*x) x->3-
lim
x
→
3
−
(
2
x
+
1
)
\lim_{x \to 3^-}\left(2 x + 1\right)
x
→
3
−
lim
(
2
x
+
1
)
7
7
7
7
= 7.0
= 7.0
Numerical answer
[src]
7.0
7.0
The graph