Mister Exam

Other calculators:


(1+n)^2/(n*(2+n))

Limit of the function (1+n)^2/(n*(2+n))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /        2\
     | (1 + n) |
 lim |---------|
n->oo\n*(2 + n)/
limn((n+1)2n(n+2))\lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right)
Limit((1 + n)^2/((n*(2 + n))), n, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limn((n+1)2n)=\lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n}\right) = \infty
and limit for the denominator is
limn(n+2)=\lim_{n \to \infty}\left(n + 2\right) = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limn((n+1)2n(n+2))\lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right)
=
Let's transform the function under the limit a few
limn((n+1)2n(n+2))\lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right)
=
limn(ddn(n+1)2nddn(n+2))\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{\left(n + 1\right)^{2}}{n}}{\frac{d}{d n} \left(n + 2\right)}\right)
=
limn(11n2)\lim_{n \to \infty}\left(1 - \frac{1}{n^{2}}\right)
=
limn(11n2)\lim_{n \to \infty}\left(1 - \frac{1}{n^{2}}\right)
=
11
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-1010
Other limits n→0, -oo, +oo, 1
limn((n+1)2n(n+2))=1\lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right) = 1
limn0((n+1)2n(n+2))=\lim_{n \to 0^-}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right) = -\infty
More at n→0 from the left
limn0+((n+1)2n(n+2))=\lim_{n \to 0^+}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right) = \infty
More at n→0 from the right
limn1((n+1)2n(n+2))=43\lim_{n \to 1^-}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right) = \frac{4}{3}
More at n→1 from the left
limn1+((n+1)2n(n+2))=43\lim_{n \to 1^+}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right) = \frac{4}{3}
More at n→1 from the right
limn((n+1)2n(n+2))=1\lim_{n \to -\infty}\left(\frac{\left(n + 1\right)^{2}}{n \left(n + 2\right)}\right) = 1
More at n→-oo
Rapid solution [src]
1
11
The graph
Limit of the function (1+n)^2/(n*(2+n))