$$\lim_{x \to 0^-} \left(1 - \tan{\left(x \right)}\right)^{\frac{x}{7}} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(1 - \tan{\left(x \right)}\right)^{\frac{x}{7}} = 1$$
$$\lim_{x \to \infty} \left(1 - \tan{\left(x \right)}\right)^{\frac{x}{7}}$$
More at x→oo$$\lim_{x \to 1^-} \left(1 - \tan{\left(x \right)}\right)^{\frac{x}{7}} = \sqrt[7]{-1} \sqrt[7]{-1 + \tan{\left(1 \right)}}$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(1 - \tan{\left(x \right)}\right)^{\frac{x}{7}} = \sqrt[7]{-1} \sqrt[7]{-1 + \tan{\left(1 \right)}}$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(1 - \tan{\left(x \right)}\right)^{\frac{x}{7}}$$
More at x→-oo